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A thermodynamic framework has been used to develop a macro-mechanical model for high-strain-rate 
deformations. The model includes the effect of nonlinear elasticity (an equation of state), solid-solid 
phase transformations, plasticity, and damage. Phase transformations are addressed using either a 
free-energy or an equilibrium-phase diagram. An anisotropic inelastic potential is used to model the 
combined effects of plasticity and ductile damage. The model is being implemented into an engineering 
design computational framework and validated using small-scale experimental data.

There are numerous applications, which involve high-strain rates 
and high pressures. Impact, penetration, and weapons performance 

scenarios are examples of representative applications. The physical 
processes, which are encountered during high-rate deformations, may 
include nonlinear elasticity, plasticity, phase transformations, and 
damage. Nonlinear elasticity or equations of state are necessary to 
accurately model the material response to shock loading conditions. 
Coupled effects, including the ability of plasticity to inhibit a material 
from transforming back to a parent phase, for example, also represent 
important effects, which must be modeled. As larger stress states are 
encountered, damage nucleation, growth, and coalescence must be 
considered. These phenomena have their basis in the evolution of the 
material microstructure. However, macro-mechanical models are still 
necessary to address engineering applications.

A macro-mechanical model has been developed that is based on 
thermodynamic considerations. To address phase transformations, the 
approach may utilize free energies for each phase or an equilibrium-

phase diagram, depending on the availability of data. An anisotropic 
yield surface for the combined phenomena of plasticity and damage 
is considered to address the effects of material texture, rate 
dependence, and ductile failure. The thermodynamic framework, in 
general, relies on both elastic (free energy) and inelastic potentials. 
The total specific Helmholtz free energy for a mixture of phases is 
provided as the mass fraction average of the free energies of each of 
the k-constituents [                            ] and a component due to mixing 
(ψmix):								      
							       (1)

In equation (1), mk  is the mass fraction of each constituent, ψk  is 
the free energy of the kth constituent,      is the elastic strain, T is 
the temperature, D is a measure of material damage, and      is the 
inelastic strain. Also, ψmix is the free energy, which is a consequence 
of mixing of the phases. Example free energies may be found in the 
literature [1-3]. Substitution of the mixture free-energy [equation (1)] 
into the Clausius-Duhem inequality for the dissipation rate results in 
expressions for the generalized thermodynamics forces including the 
stress, entropy, plasticity (hardening), damage, transformation strain, 
and transformation kinetics [3].

Two inelastic potentials, related to the combined effects of plasticity and 
damage [                      ] and phase transformations [                  ], are 
postulated. The appropriate inelastic parameters then may be defined in 
terms of these potentials [3]:

						                (2)

In equation (2), the thermodynamics variables are                    and  
                      . The parameters dλp and dλt are the Lagrange multipliers 
for plasticity and phase transformations, which may be obtained from the 
consistency conditions (dφp = 0 and dφt = 0 ). Extensions of the Gurson 
surface [4] have been considered for an ellipsoidal void embedded 
within a perfectly plastic, anisotropic matrix [5]. In the current model 
development, it is assumed that the voids remain spheroidal. The flow 
surface can be written with respect to a Cartesian coordinate system [5]

Fig. 1. Pressure versus specific volume 
for uniaxial compression and tension of 
zirconium.
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associated with the axis of orthotropy for the matrix material:

							       (3)

In equation (3),      is the anisotropy tensor for the matrix material, φ 
is the porosity,     is the Cauchy stress, P is the pressure, and κ is a 
material constant that is dependent on the material anisotropy. Strain 
rate dependent models may be used for the yield function (Ys) of the 
solid or matrix material. The effective plastic strain of the matrix (solid) 
constituent (     ) is used as the hardening parameter in the model for 
the yield function. The matrix plastic strain is obtained from the equality 
between the plastic work of the composite and matrix materials [6]. The 
inelastic potential for the phase transformations is written in terms of 
the differences [2] of the free energies ( m k = fk(Δgsk), where                            	
		       is the Gibb’s free energy of each phase). If free 
energies are not available, then the kinetics may be obtained from an 
equilibrium phase diagram [7].

Finally, the total strain rate is decomposed into the elastic (    ), plastic 
(     ), and transformation (    ) rates. The plastic strain rate is obtained 
directly from the plastic potential [equation (2)]. Functional forms for 
the transformation strain rate may be found in the literature [3]. The 
evolution of porosity, in general, is composed of contributions due to 
void nucleation, growth, and coalescence. Classical approaches model 
the porosity growth [4,6] component as directly related to the change in 
the volumetric plastic strain [                      ] of the composite material 
dϕ = (1–φ)dεp.

A novel numerical technique [8] has been used to solve the resulting 
equations for the shear stress (                        ), pressure (P), porosity 
(φ), and plastic strain, once the kinetics of the transformation process 
have been addressed. An overstress approach is being considered to 
address the issues related to localization and the ensuing ill-possedness 
problems.

Single-cell simulations (Figs. 1 and 2) using the model demonstrate 
the ability of the model to capture porosity crush-up and phase 
transformations for a uniaxial compressive condition as well as 
the growth of damage for a uniaxial tensile condition. The model is 
being implemented into a finite-difference computational analysis. 
Experimental data will be used to validate the model. For example, 
plate impact and Taylor impact (Fig. 3) simulations will be used in 
comparisons with experimental data to explore the ability of the model 
to accurately capture material anisotropy, rate dependence, phase 
transformations, and damage.
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Fig. 2. Von Mises stress versus specific 
volume for uniaxial compression and 
tension of zirconium.

Fig. 3. A representative simulation of 
a Taylor impact experiment showing 
contours of pressure at t= 60 ms. The 
wire outline provides the original shape 
of the projectile.

φ p (P, s ,φ) = 3
2σ :M :σ

−Ys
2 1+ q1φ( )2 −2q1φ cosh q2κ P

Y0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 0

M
σ

ε s
p

gsk =ψ sk − vskσ sk :ε sk
e

 ee

 ep  et

dε p = tr(dε p )

τ = 3s : s / 2

mailto:addessio@lanl.gov

